منابع مشابه
An unusual eigenvalue problem
We discuss an eigenvalue problem which arises in the studies of asymptotic stability of a self-similar attractor in the sigma model. This problem is rather unusual from the viewpoint of the spectral theory of linear operators and requires special methods to solve it. One of such methods based on continued fractions is presented in detail and applied to determine the eigenvalues.
متن کاملInverse Problem for an Inhomogeneous Schrödinger Equation * †
Let (− k 2)u = −u + q(x)u − k 2 u = δ(x), x ∈ R, ∂u ∂|x| − iku → 0, |x| → ∞. Assume that the potential q(x) is real-valued and compactly supported: q(x) = q(x), q(x) = 0 for |x| ≥ 1, 1 −1 |q|dx < ∞, and that q(x) produces no bound states. Let u(−1, k) and u(1, k) ∀k > 0 be the data. Theorem.Under the above assumptions these data determine q(x) uniquely.
متن کاملAn Eigenvalue Problem for Elliptic Systems
By means of non-smooth critical point theory we prove existence of weak solutions for a general nonlinear elliptic eigenvalue problem under natural growth conditions .
متن کاملOn an Eigenvector-Dependent Nonlinear Eigenvalue Problem
We first provide existence and uniqueness conditions for the solvability of an algebraic eigenvalue problem with eigenvector nonlinearity. We then present a local and global convergence analysis for a self-consistent field (SCF) iteration for solving the problem. The well-known sin Θ theorem in the perturbation theory of Hermitian matrices plays a central role. The near-optimality of the local ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational and Applied Mathematics
سال: 2004
ISSN: 0377-0427
DOI: 10.1016/j.cam.2003.09.002